Posts

Human skin color

Image
Human skin color ranges from the darkest brown to the lightest hues. Differences in skin color among individuals is caused by variation in pigmentation, which is the result of genetics (inherited from one's biological parents), the exposure to the sun, or both. Differences across populations evolved through natural selection, because of differences in environment, and regulate the biochemical effects of ultraviolet radiation penetrating the skin. The actual skin color of different humans is affected by many substances, although the single most important substance is the pigment melanin. Melanin is produced within the skin in cells called melanocytes and it is the main determinant of the skin color of darker-skin humans. The skin color of people with light skin is determined mainly by the bluish-white connective tissue under the dermis and by the hemoglobin circulating in the veins of the dermis. The red color underlying the skin becomes more visible, especially in the face, when

Melanin and genes

Image
Melanin is produced by cells called melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes. People have different skin colors mainly because their melanocytes produce different amount and kinds of melanin. The genetic mechanism behind human skin color is mainly regulated by the enzyme tyrosinase, which creates the color of the skin, eyes, and hair shades. Differences in skin color are also attributed to differences in size and distribution of melanosomes in the skin. Melanocytes produce two types of melan

Evolution of skin color

Image
Loss of body hair in Hominini species is assumed to be related to the emergence of bipedalism some 5 to 7 million years ago. Bipedal hominin body hair may have disappeared gradually to allow better heat dissipation through sweating. The emergence of skin pigmentation dates to about 1.2 million years ago, under conditions of a megadrought that drove early humans into arid, open landscapes. Such conditions likely caused excess UV-B radiation. This favored the emergence of skin pigmentation in order to protect from folate depletion due to the increased exposure to sunlight. A theory that the pigmentation helped counter xeric stress by increasing the epidermal permeability barrier has been disproved. With the evolution of hairless skin, abundant sweat glands, and skin rich in melanin, early humans could walk, run, and forage for food for long periods of time under the hot sun without brain damage due to overheating, giving them an evolutionary advantage over other species. By 1.2 million

Genetics

Image
The understanding of the genetic mechanisms underlying human skin color variation is still incomplete, however genetic studies have discovered a number of genes that affect human skin color in specific populations, and have shown that this happens independently of other physical features such as eye and hair color. Different populations have different allele frequencies of these genes, and it is the combination of these allele variations that bring about the complex, continuous variation in skin coloration we can observe today in modern humans. Population and admixture studies suggest a 3-way model for the evolution of human skin color, with dark skin evolving in early hominids in sub-Saharan Africa and light skin evolving independently in Europe and East Asia after modern humans had expanded out of Africa. Dark skin edit All modern humans share a common ancestor who lived around 200,000 years ago in Africa. Comparisons between known skin pigmentation genes in chimpanzees and modern Af

Age

Image
In hominids, the parts of the body not covered with hair, like the face and the back of the hands, start out pale in infants and turn darker as the skin is exposed to more sun. All human babies are born pale, regardless of what their adult color will be. In humans, melanin production does not peak until after puberty. The skin of children becomes darker as they go through puberty and experience the effects of sex hormones. citation needed This darkening is especially noticeable in the skin of the nipples, the areola of the nipples, the labia majora in females, and the scrotum in males. In some people, the armpits become slightly darker during puberty. The interaction of genetic, hormonal, and environmental factors on skin coloration with age is still not adequately understood, but it is known that men are at their darkest baseline skin color around the age of 30, without considering the effects of tanning. Around the same age, women experience darkening of some areas of their skin. Hu

Sexual dimorphism

Image
It has been observed that females are found to have lighter skin pigmentation than males in some studied populations. This may be a form of sexual dimorphism due to the requirement in women for high amounts of calcium during pregnancy and lactation. Breastfeeding newborns, whose skeletons are growing, require high amounts of calcium intake from the mother's milk (about 4 times more than during prenatal development), part of which comes from reserves in the mother's skeleton. Adequate vitamin D resources are needed to absorb calcium from the diet, and it has been shown that deficiencies of vitamin D and calcium increase the likelihood of various birth defects such as spina bifida and rickets. Natural selection may have led to females with lighter skin than males in some indigenous populations because women must get enough vitamin D and calcium to support the development of fetus and nursing infants and to maintain their own health. However in some populations such as in Italy, P

Disorders of pigmentation

Image
Uneven pigmentation of some sort affects most people, regardless of bioethnic background or skin color. Skin may either appear lighter, or darker than normal, or lack pigmentation at all; there may be blotchy, uneven areas, patches of brown to gray discoloration or freckling. Apart from blood-related conditions such as jaundice, carotenosis, or argyria, skin pigmentation disorders generally occur because the body produces either too much or too little melanin. Depigmentation edit Albinism edit Some types of albinism affect only the skin and hair, while other types affect the skin, hair and eyes, and in rare cases only the eyes. All of them are caused by different genetic mutations. Albinism is a recessively inherited trait in humans where both pigmented parents may be carriers of the gene and pass it down to their children. Each child has a 25% chance of being albino and a 75% chance of having normally pigmented skin. One common type of albinism is oculocutaneous albinism or OCA, which